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The lattice Boltzmann method.BM) is regarded as a specific finite difference discretization for the kinetic
equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models,
such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equa-
tions. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the
lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the
property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing
the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct
hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermo-
hydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-
Lewey condition and using the semi-implicit collision schef®1063-651X97)50501-0

PACS numbsdrs): 47.10+g

In recent years, the lattice Boltzmann methie8M) has  a small parameter, proportional to the Knudsen nunidéer
attracted attention as an alternative numerical scheme fdbensity and momentum are defined as velocity moments
simulation of fluid flows[1]. Unlike traditional numerical of the distribution functionf;, p=3;f;, and pu==;f;e.
methods which solve for macroscopic variables, LBM isFor thermal problems, an internal energycan be defined
based on the mesoscopic kinetic equation for the particlas 13;f;ef=pE+(p/2)|u|?>. The equilibrium distribution
distribution function. The macroscopic quantities, such agunction f* depends on density, momentum, energy, and the
density and velocity, are then obtained through moment inspecific lattice used. Its functional form can be tuned so that
tegrations of the distribution function. The kinetic nature ofthe appropriate macroscopic equations are obtained. The
LBM introduces a number of advantages, such as Iinearity Ofnacroscopic equations are derived from Eqby means of
the convection operatdthe nonlinear macroscopic term is a multiscale Chapman-Enskog expansidh
obtained through a multiscale eXpanSion, aVOiding SOIVing A Comm0n|y used lattice Boltzmann method, the so-
the nonlinear Riemann problgmand the recovery of the called lattice BGK mode[3], is a specific discretization of
Navier-Stokes(NS) equations in the nearly incompressible gq. (1). If we replace the time derivative by a first order time
limit, thus avoiding solving difficult Poisson equations for gifference, use a first order upwind space discretization for
the pressure. In addition, since LBM seeks the minimum seghe convective terne - Vf;, and use a downwind collision

of velocities in phase space, only one or two speeds and @rm ((x—e ,t) for Q(x,t), we have a finite difference
few moving directions are used in LBM, and the numericalequation forf; :

solution of the kinetic equation is very simple.
The lattice Boltzmann method starts from the following  f;(x,t+At)=f;(x,t) — a[ f;(x,t) — f{(Xx—€AX,1)]
Boltzmann equation for the discrete velocity distribution in

two and three dimension&]: B
el Lot - ffx-eaxnl, @

ar .
HJFQ'Vfi:Qi (1=12,....N), @) wherea= At/Ax, B=At/e, andAt andAx are the time step

and the grid step, respectively. ChoosiAg)=Ax=Ay=¢

wheref; is the particle velocity distribution functioe, is the  we then obtain the following standard LBM equati8i:
velocity along theath direction,N is the number of different
velocities in the model, an€l; is the collision operator. It fi(x,0) = fFFx1)
should be pointed out that in the phase space, the space vari- fixte t+D)-fi(x)=- T )
able x and the velocity variable are independent. While
only a small set of discrete velocities are used in LBM to  The above discretization to Eql) only has first order
approximate the Boltzmann kinetics of the continuum velocconvergence in space and time. However, it has been shown
ity, the Boltzmann equation is valid for continuum variables[4] that since Eq(3) has a Lagrangian nature in space dis-
x andt. cretization, the discretization error has a special form which

For the single time relaxation approximation or the latticecan be included in viscous terms, resulting in second order
BGK [3], Q;=—(Le7)(f;— %, where f7% is the local accuracy both in space and time. For the seven-speed hex-
equilibrium distribution, 7 is the relaxation time, and is  agonal LBM model[3], the kinematic viscosity for Eq2)
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can be obtained analytically:=|e|?e 7/4— | €|2At/8. For Eq. 08 —————————————————
(3), we havev= 1/4—1/8. The first part inv is the physical :
viscosity and the negative part of the viscosity is the conse- 02 :
guence of taking account of discretization error and replacing . 0.1 |
Q by the downwind operatdi5]. = !

It should be pointed out, however, that this particular dis- § 0 b
cretization and the conditioAt=Ax are not necessary. Ac- > 01
tually, any standard finite differendgD) scheme[4,6—§
will serve the purpose of solving E¢l) as well. The use of 02 : :
Eq. (3) reflects the historical fact that LBM came about as a o3 L]
refinement, or a by-product of the lattice gas automaton 0 2 4 6
method(LGA) [9]. In the latter, “Boolean” particles reside X

in a discrete lattice, subject to the automaton dynamics of
streaming and collision. One of the main ideas driving the
initial LGA efforts was to produce theimplestmicrodynam-
ics that would yield hydrodynamics behavior. Recovering
rotational invariant macroscopic equations from a discrete
finite velocity microscopic dynamics imposes constraints on
the symmetry of the lattice used, unlike the continuum Bolt-
zmann equation with infinite velocities, for which rotational
invariance is automatically recovered. For LBM this is ob-
tained from physical symmetry and lattice symmetry. By the
physical symmetry we mean the symmetry attached to the 0 2 4 8
velocity space and the equilibrium distribution for velocities, y
including the combination of specific weights in equilibrium
distribution functions for different speeds, the choice of pa- FIG. 1. Simulation of 2D Taylor vortex with FDLBE at
rameters in the equilibrium distribution function, and a suf-=10 (L) and 50 (A). The analytical solution(solid lineg for
ficient number of moving velocity directiorl§. The lattice  the Velocity is u(x.y,t)=—ucexf - s(ki+k)]coskx)sin(y)
symmetry requirements are that the number of lattice direc2nd U(X’y’t):uo(kl/kZ)eXFI_Vt(k%rkg)]s'”(klx)cos@y?' where
tions (in x space and the number of lattice links are the sameYo~0-01, andk;=1 andk,=4 are the wave numbers in theand
as those for the particle distribution functiof0]. One of Y directions, respectively@ v (X)ly—r/uo vs X; (b) U(y)lx-r vs
the fundamental differences between LGA and LBM is that’" The relaxation time 7 is 0.0018.
while in LGA individual particles are followed, in LBM the ) o . )
“molecular chaos” assumption is used, leading to the loss of The temporal discretization is obtained using second or-
particle-particle correlations. At this point it is important to der Runge-Kuttamodified Euley method. The time evolu-
distinguish between the symmetry needed to recover the coflon Of particle distribution functions is then derived by
rect macroscopic equation@hysical symmetly and the fi" “PI=f"—At/2R™ and " P =" - AtR{M 2,
symmetry that is required from the lattiattice symmetry ~ whereR;=—(e;Dy+e;,D,)f;— (f;— /e 7. Thus, combi-
Because of the ‘“streaming” stefparticle or distribution nation of these specific space and time discretizations results
functions hopping between neighboring celise two sym- in a second order in both time and space. Only the physical
metries go together. While the streaming of particles is arviscosity will survive in this approach.
essential part of LGA dynamics, it is not crucial for LBM. As the first example, we apply the FDLBE scheme to
Any discretization of Eq(1), such as FD or finite element simulate the evolution of the two-dimensional Taylor vortex
method will suffice to get the Navier-Stokes equations. Inflow in a square periodic domain using a nonuniform mesh.
this way, what we termed thphysical symmetry can be Eight moving velocities and one rest velocitlN€9) are
separated from the lattice symmetry. used[3,11], but the diagonal spatial links are not needed. For
Once this is recognized, a variety of options becomehis system, the kinematic viscosity, is e7/3. 32<128 grid
available for the method. For example, introducing non-points are used, i.eAx=4Ay. Numerical and analytical so-
uniform meshes(or any non-Cartesian coordinates, suchlutions for this decaying flow are presented in Fig. 1, show-
as cylindrical or sphericalwould be as easy as in other ing excellent agreement.
conventional schemes, such as FD. All existing LBM To demonstrate the flexibility of LBE with the lattice
models could be extended to this approach. This could beymmetry released, we present an example of a LBE appli-
accomplished with the present approach by simply discretizeation in cylindrical coordinates. Consider the fluid flow be-
ing the gradient operator in the convection term in the apiween two coaxial cylinders. The fluid is at rest initially. The
propriate coordinates. One possible way to release the comuter cylinder suddenly starts to rotate with a constant veloc-
straint of the lattice symmetry is to use the finite differenceity V, while the inner cylinder is kept still all the time. For
scheme for the lattice Boltzmann equati@fDLBE). For  this classic problem, an analytical solution can be derived
example, the central difference scheme for smooth solutionkased on the Fourier-Bessel expandib®). It is convenient
can be utilized to calculate the spatial gradient in Eq.to describe this problem in cylindrical coordinates, in which
(1), ofjlax=D,fi=[fi(x+Ax,y)—fi(x—Ax,y)]/(2Ax), the only nonzero angular component of velocity de-
dfilay=Dfi=[fi(x,y+Ay)—fi(x,y—Ay)]/(24y). pends on the radial coordinate Here, the origin of the
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FIG. 2. Normalized numerical velocity profilegolid lineg ] .
as functions of for t=10, 20, 30, 40, 50, 60, and 200, compared _ F'G- 3. Normalized temperatur@”=(T—To)/(T,—~To) for
with those of analytical solutioiidots. The radius raticb/a=2.  Couette flow with heat transfer for Brinkman numbés=5 ()
The relaxation timesr equals 0.001. 581000 grid points in andB,=10(+). Solid line is the analytical solution as given in the

radial and angular directions have been used in the numerical sim{€t: The top wall moves with speed,=0.1, and the bottom
lation. wall is at rest.

coordinater =0 coincides with the center of the geometry. preassumed in our numerical method. Therefore, the LBE in
r=a andr=b correspond to the inner and outer cylinder, cylindrical coordinates presented here is applicable to more
respectively. The time-dependent velocityy(r,t), can be general problems.

written as vo(r,it)y=A(rla—alr)+AZ]_ A Z(r] The standard lattice Boltzmann discretization in E).
a)exp(— v)\ﬁt), where A=abV/(b?—a?) is a constant, often encounters numerical instability for high Reynolds
Zy(rla)=J(\yr/a) —[J1(N)/Y1(N) TY1 (N r/a) areeigen-  number flows[4] and for thermal problems. In general, nu-

functions, and eigenvalues, with n=1,2, ... areroots of = merical stability requires that the time step and spatial step
equation Ji(\b/a)—JI;(N\p)/Y1(N,)Yi(Nb/a)=0. A,s satisfy the Courant-Friedricks-LeweyCFL) condition

are constant coefficients determined by[14,4]: |g|At/Ax<1. The standard LBE assumés=AXx,
Anzfgr(r/a—a/r)Zn(r/a)dr/fgr[Zn(r/a)]zdr. leading to|e|=<1. For the seven-velocity hexagonal model,

LBE simulation is performed in the domaias<r<b, this condition is marginally satisfied. That is the reason
and 0<#<2w. The numerical grid is defined on the why the scheme is often unstable when viscosity gets
cylindrical coordinates r(,,6,), where ry=a+(m small (r—1/2). For the 13-velocity thermal modgl5], the
—-1)(b—a)/(M—1) and9,=27(n—1)/N, with M andN  standard LBM does not satisfy this CFL condition for the
being numbers of grid points in radial and angular directionsyelocity distribution function with speed 2. For this system,
respectively. The particle distribution functidn(r,,,6,) is  only a very narrow temperature range can be simulated. With
defined along nine directiong as those of regular square FDLBE, the stability can be ensured by relaxing the
lattice in Cartesian space in the velocity space, butyim-  Lagrangian particle convection and by adjusting
drical grid pointsin physical coordinate space. The collision At(<Ax/|g|). To demonstrate this idea, we simulate the
operator can be easily processed using velocity componentsermal conduction in a channel with the top wall moving
vx, vy in the Cartesian coordinates as intermediateat a constant speetdd, [15]. The analytical solution for
quantities. The cylindrical velocity components andv, the temperature distribution can be written as
can be obtained by projecting, and v, onto radial and T =(T—To)/(T1—To)=3(1+y*)+(B,/8)(1—y*?), where
angular unit vectorg, ande,. Nevertheless, the convection y*=y/L, B, is the Brinkman numberU3/(T,;—T)?, L
term is now calculated in cylindrical coordinates, i.e.,is the channel width, antdl, and T, are temperatures at the
e-Vfi=¢g-edf;/dr+e-eof;/rdf. Again, using the cen- top and the bottom wall, respectively. The FDLBE method
tral difference scheme for the spatial discretization and thénas been used to discretize the 13-velocity thermal model
second order Runge-Kutta scheme for time advance resulefjuation as proposed in Réfl5]. The agreement between
in a second order scheme in both space and time. The exheory and simulation shown in Fig. 3. We emphasize that
trapolation method13] has been adopted to treat the wall- the results are obtained on ractangular mesh using the
boundary on the cylinders to achieve second order accuracy3-velocity modelthree speedsin addition, since the CFL
for the boundary conditions. In the angular direction, thecondition is satisfied 4=0.2), we did not encounter any
periodic boundary condition is naturally applied. In Fig. 2 we numerical stability problem here, as often occurred in previ-
present the angular velocity as a functionrofit different  ous numerical simulatiorf45]. In fact, using the FDLBE the
time steps, compared with those from the analytical solutiontange of the particle speed can be extended, which helps in
The agreement is excellent. It should be mentioned that theimulating problems with a broad range of temperature.
unidirectional feature of the rotating cylinder problem is not  The use of semi-implicit schemes may be another solution
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for improving numerical stability without much additional allowing for a better capture of the interface. We are pres-
computational work. Actually Eq(2) can be solved by the ently exploring this possibility.

following scheme:  fi(x,t+At)="f;(x,t) —a[fi(x,t) Other similar kinetic approaches to the NS equations ex-
—fi(x—eAx,t)]— Bl fi(x,t+At) — f*Yx,t+At)]. In this ist. For example, the gas-kinetic finite volume methdd] is
equation, the unknown density and momentum in@ Kinetic method that uses a relaxation operator as an ap-
f%x,t+At) can easily be obtained through moment equaproxmatmn to the collision term in the Boltzmann equation.
tions, preventing one from solving a tridiagonal matrix. The | '€ Scheme, however, also makes use of an infinite velocity
C . . ! space, unlike LBM and FDLBE, which are characterized by
implicit method will allow a larger time step\t> ¢ 7) in the

. . . ; . using only a small set of velocities. The kinetic-type relax-
integration of Eq(2) for simulating flows at high Reynolds o' method for solving the hyperbolic conservation system

numbers,.wherer IS sma]l. has been proposed by Jin and Xi6]. This approach uses
We point out that for interface problems, such as shockpe rejaxation approach to model the nonlinear terms, and
waves and two-phase flows, an upwind finite difference fory, s it is free of nonlinear Riemann solvers. Both of these
Eq. (1) might have some advantages. This is so because gfiodels were developed mainly for shock capture in Euler
upwind scheme is more capable of capturing steep gradienty,stems, whereas the lattice Boltzmann method is more fo-

than the second order central-difference discretization. Thigsed on viscous complex flows in the nearly incompressible
is also one of reasons why the LBM is a good scheme fojj;t [1,11].

two-phase fluid flows. Accordingly, a possible extension is

to combine a second-order upwind method with a slope lim- We thank H. Chen, X. He, Y. Kato, N. Martys, and S.
iter [16] that will make the discretization become first order Succi for useful discussions. Shi Jin acknowledges support
where the gradient is greater than a certain threshold, thusom NSF Grant No. DMS-9404157.
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